
Real-Time Systems

An Exploration of Mapping Algorithms for Autonomous
Robotic Mapping

Jonathan Reynolds
Colorado State University – 2005 USAR GS Controls

Copyright © 2005 Department of Mechanical Engineering, Colorado State University

ABSTRACT

This paper discusses algorithms for simultaneous
localization and mapping (SLAM). Advantages of each
major type of algorithm, probabilistic and incremental,
are presented. Hybrid approaches and their possibilities
are discussed. An explanation of a proper algorithm
selection method has been provided. The example of an
urban search and rescue (USAR) robot is used to show
this selection method. This example is carried further
through the presentation of a method for integration in
such a robot. The complexity of a SLAM system is
shown and expounded upon.

INTRODUCTION

The robot mapping problem is one which consists of a
robot being able to create a map in real time and know
where it is within that map. This is known as
Simultaneous Localization And Mapping (SLAM). A
SLAM system would be very beneficial for autonomous
robot operation. This is especially apparent in a robot
such as used in search and rescue.

The robot mapping problem, more specifically, consists
of the robot finding its pose, creating a map, and
integrating the two. The pose is information relating to
the location and orientation of the robot relative to its
environment. If a robot is able correctly calculate its
pose, it is then able to determine the best route to obtain
its goal. The problem lies in the fact that to successfully
determine its pose, it must have a map of the
environment; yet, to create a map, it must first explore
and thus know its pose.

In some situations, 3D SLAM can be beneficial. In this
case, a three dimensional rendering of the environment
is created for the map. This additional level of
complexity greatly increases the data processing
requirements for the processor. A three 3D SLAM
system would, in essence, use the same algorithm as its
2D counterpart. From this point on, the author will
assume that a 2D SLAM system will be used.

Mapping algorithms, effectively, began in the 1980’s with
occupancy grid mapping which creates a grid of
elements for the map. In the late 1990’s, probabilistic
methods tended to dominate algorithms used. Today,
even hybrid combinations of incremental and
probabilistic methods are used [1].

ALGORITHMS

There are three primary types of algorithms to be
considered. These are probabilistic, incremental, and
hybrid methods.

PROBABILISTIC ALGORITHMS – The primary purpose
of the probabilistic algorithm is to address the
correspondence problem. This is where the robot must
be able to determine if data taken at different times
correspond to the same physical object. Probabilistic
techniques yield some of the most accurate results of
any method. Unfortunately, most of them are too
computationally intensive to run in real-time.

Bayes’ Filter – The foundation of any probabilistic
algorithm is Bayes’ rule. Bayes’ rule (Equation 1) states
that the probability of x given data, d, (the posterior) is
equal to the probability of d with respect to x (likelihood)
multiplied by the probability of the prior, x, and divided by
the probability of d, the marginal likelihood or evidence.
Basically, this means that the current belief can be
changed based on the prior belief observations. Bayes’
filter uses a continuous estimation to approximate both
the map and the robot’s pose. Refer to Equation 2
where s is robots pose, location and orientation, m is a
map, z is a sensor scan, i.e. data from a laser scanner,
and u is a set of motion commands or odometry or
similar motion feedback data [1].

Equation 1

Equation 2

),(

),|,()',|(),|(
),|,(

1
11

1

tt

t
tt

ttt
t uzp

dsuzmspsuspmszp
uzmsp � −

−−
−

=

Because this approach utilizes a continuous equation,
integral over real time, it is not possible to use it in this
form. However, the Bayes’ Filter is the basis for many
probabilistic methods.

Backwards Correction – For cyclic maps, locations with
passages that close back on themselves, error tends to
grow exponentially (Figure 1). One way to fix this
problem is to adjust the map backwards in time.
Equations 3-5 describe the difference used for the
backwards correction where ts� is the robots belief that
this posterior is correct. This yields a very accurate map
for cyclic environments, but at a greater processing cost
[2].

Equation 3

ttt sss �−=∆

Equation 4
),,|(maxarg 11 −−= ttttt suzsPs ��

Equation 5

tt ss �maxarg=

Figure 1. Odometry error increasing over time [1].

Kalman Filter – Kalman filters are basically Bayes’ filters
with the exception that they use Gaussians to estimate
the robots pose. The Gaussian is the full state vector for
sx, sy, and s� for K distinguishing points as seen in
Equation 6. The Kalman filter algorithm operates on the
postulation that the current state function must be a
linear step from the previous state function with
Gaussian noise. This noise builds an umbrella shaped
region of uncertainty (Figure 2). This Kalman filter then

uses Bayes’ theorem to “filter” out the less likely results.
Even though this is done, the uncertainty will grow
overtime. [2, 3]

Figure 2. Gaussian error of posterior increasing with
time [2].

Equation 6
T

tyKttytxttytxt mmmmsssx),...,,,,,,(,,,,1,,1,,1,,, θθ=

Expectation Maximization – This algorithm calculates the
expected posterior of a robots pose for a given map.
This method must process the data many times, and
therefore can not be used in real-time. It is, however,
one of the most accurate solutions to the
correspondence problem. [2]

Lu/Milios – This algorithm is a variation of the Kalman
filter. It estimates posteriors the same way, but it also
compares ranger data from multiple scans. This allows
the Lu/Milios algorithm to compensate for
correspondence errors. However, this is not a real-time
algorithm.

INCREMENTAL METHODS – Incremental methods are
designed to work in real time easier than probabilistic
methods. Overall, incremental methods allow for a more
plausible algorithm to be used in real-time, onboard and
autonomous robot.

Maximization Likelihood – This method compares nearby
measurements of the previous map to see if it can tell
which way the robot has moved and by how much.
Because this is done repeatedly, it can recover from
wrong correspondences. This algorithm takes a large
amount of processing, and therefore is sometimes not
able to be run in real-time. Although, it does work
amazingly well. [1, 2]

Occupancy Grids – This is one of the most popular
algorithms because of its ease of use and robustness.
The basic principle of occupancy grids is that the binary
occupancy of a location (x,y) is calculated. This method
will incrementally update each grid cell. The primary
problem is one of consistent mapping due to noisy
sensors. This problem is alleviated when coupled with a
probabilistic approach. This will be further discussed
later.

Dogma – Dynamic Occupancy Grid Mapping Algorithm is
one which can learn. It is very effective in dynamic
environments, and it operates by learning the
characteristics of an obstacle such as a trash can. This
algorithm relies on the mutually exclusive requirement:
any given object can not be in multiple locations at the
same time.

HYBRID APROACHES – These consist of some
combination between probabilistic and incremental
methods. Hybrid algorithms typically handle complex
mapping in real-time. Although they are newer, and
perhaps a bit more difficult to implement, they provide
much better results than either purely probabilistic or
incremental methods can be for an autonomous robot.

Applying a method of Bayes’ filters to the occupancy grid
algorithm yields a very powerful solution to the
autonomous robot mapping dilemma. This method can
solve problems of sensor noise by generating
probabilistic maps. It would calculate the posterior for
each grid cell with p(mx,y|z

t,xt). The logarithmic form for
the resulting equation is seen in Equation 7. [6]

Equation 7

)
1

log
1

log
1

log
1

log
11

11

),s|zp(m

),s|zp(m
()

)p(m

)p(m
()

),s|zp(m

),s|zp(m
()

),s|zp(m

),s|zp(m
(

tt
x,y

tt
x,y

x,y

x,y

ttx,y

ttx,y

tt
x,y

tt
x,y

−−

−−

−
+

−
+

−
=

−

Another common hybrid approach is to integrate a
Bayes’ filter into an incremental maximum likelihood
method. This allows the robot to maintain calculate its
posterior while mapping.

Hybrid approaches work very well at creating reasonably
consistent maps in real-time, it is important to note that
they do not handle cyclic environments well. While it is
possible for some hybrid approaches to use backwards
correction to compensate, the results are not always
stable.

ALGORITHM SELECTION

SELECTION PROCESS – To select an algorithm, one
must first consider their constraints. It is important to
decide if real-time mapping is necessary or not. Beyond
that, it is helpful to know what level of accuracy is
required, whether the maps generated will be stationary
or for a SLAM system, and whether or not a dynamic
environment is to be mapped. This process lists many of
the commonly used mapping algorithms today, but
should not be considered to be a complete work on the
subject. Once the primary constraints are defined and a
good source of algorithms has been defined, a selection
can be made. One method for selection is to create an
advantage/disadvantage matrix to compare the
properties of each algorithm with the desired constraints.

USAR EXAMPLE – As an example, an autonomous
robot used for Urban Search and Rescue will be
discussed. The one seen in Figure 3 was built for a
USAR competition held annually by Robocup.

Figure 3. Good Samaritan USAR robot created by
Colorado State University for Robocup competition.

Constraints - For this competition, the robot must
navigate through a simulated earthquake environment
trying to find simulated victims. There is a very strong
emphasis on autonomy and a map with victim and
obstacle locations must be created. For autonomy and
exploration to co-exist effectively, it must operate with a
SLAM system. It will need to use the map to wander
toward unexplored areas, and to find its way to goal,
such as a user input or a possible victim. The map will
have to be created in real time based on laser range-
finder data. It is desired that it will be able to map while
simultaneously carrying out other goals.

Selection – Based on these goals, each of the three
main topics have to be considered. The real-time aspect
would lead to an incremental method, but the accuracy
needed, because of the desire to map while moving,
leads to a probabilistic method. This should prompt one
to consider using hybrid methods. Because of the ease
of implementation, a hybrid occupancy grid algorithm will
be considered.

INTEGRATION AND USAGE

BOUNDS – Bounds to consider when implementing an
algorithm include processing and memory requirements,
available sensors, and availability of accurate odometry.
For this example, it can be assumed that the robot will
not be trying to map cyclic environments. With this
assumption, the amount of necessary calculations will be
fairly insignificant compared to other mapping algorithms.
The memory, however, will likely be substantial.
Because of speed, it is desirable to use on chip memory
whenever possible (versus serial EEPROM’s). Thus, it is
fair to reason that there could be one dedicated
processor just for mapping. It is possible that this
processor (if sufficient) would also be able to handle
some of the other robotic functions, such as directed
wander for exploration, which relate to the map.

For high accuracy, the sensors must be sufficient in data
acquisition ability and distance accuracy. In this example
a LADAR is used. The particular model used here, as

shown in Figure 4, is a Hokuyo URG-04. This has a
240o range with 0.36o increments [5]. This sensor is
quite adequate for the level of precision desired for this
USAR competition.

Figure 4. Hokuyo URG-04LX LADAR [5].

The next question is whether or not accurate odometry is
available. Traditionally, tracked robots do not provide
accurate odometry. This is because of slippage of the
track and obstacles that one track may transverse
without the other. Probabilistic methods have been
known to produce accurate results even without
odometry at all. This provides yet another incentive to
continue on with the hybrid occupancy grid method
versus simply incremental algorithms. [2, 4]

Figure 5. Map based on LADAR data from matrix
format.

SLAM – The process that the processor will go through
for using this mapping algorithm on the given example
would be as follows. First, it will take a sensor reading
and convert those data points into full or empty grid cells,
storing this information as a matrix. Figure 5 is a robot-
centric map which was created from matrix data
calculated from distance data from the LADAR. The
picture shows the actual environment that used for the
scans. A Freescale (Motorola) 9s12 (HC12 family)
microcontroller was used to talk to the LADAR and
receive data points. The data is returned as two 6-bit
numbers that must be converted by subtracting a
decimal value of 48 from each, bitwise shifting the high
bit six places, and combining it with the low bit via an OR
function. This value, in decimal, is the distance in
millimeters to the point specified. This is done for as
many of the 681 available points as desired. Each point
is then converted to a delta-x and delta-y value from the
robot’s current position using trigonometry for the angle

of the given point added to the pose estimated angle of
the robots current position verses its original position.
The grid value at that point is then changed from a zero
to a one. Because the starting position of the robot
within the arena is unknown, the matrix is multiplied by
four and it is assumed to start in the center of the matrix.
In this case, no mater where the robot starts or its
orientation, the map of the arena will fit within this matrix.
This, obviously, increases the size of the matrix which
could be an issue if using a microcontroller. In this case,
a microcontroller was used and the entire size of this
specific matrix fit well under the RAM limitations of this
specific microcontroller. Because the matrix is one of
ones and zeros, the data can be stored in byte format;
every eight grids in the x-direction are compiled into a
byte. This allows the size to be reduced for memory
storage as well as transmitting to a user/base station.
The C-code for these calculations can be found in the
Appendix.

With a second map (second scan), it would be possible
to estimate the robots posterior within a certain error. It
could then compare this posterior state to the odometry
data to reduce the error. This allows the robot to know
its localization and use that information for path planning.
[4] This step is more complicated but hopefully will be
implemented for this robot in the near future.

AUTONOMY – Specifically for autonomy, the robot
would first consider its path history, as compared to the
map it has generated. This will allow the robot to
“wander” or explore beyond what it has already seen.
This wandering would of coarse be limited to the
obstacles in the vicinity, and the robot would have a
higher directive to avoid hitting any obstacles. The robot
would have to have three forms of directed wander as
well. The first would be if the robot detects a possible
victim. The second would be a user bias to its current
autonomous path. This may occur if the user is able to
detect a possible victim that the robot did not. The third
method of directed wander, similar to the first, would be
to further investigate a possible victim for more signs of
confirmation without hitting the possible victim or any
obstacle. In each of these scenarios, the robot would
have to compare its current map with the desired
destination and calculate the best route to get there in
the quickest time while avoiding obstacles.

CONCLUSION

ALGORITHMS - The three primary types of mapping
algorithms are probabilistic, incremental, and hybrid.
Each has its own advantages and disadvantages.

Probabilistic - The probabilistic methods include Bayes’
filter, backwards corrections, Kalman filter, expectation
maximization, and Lu/Milios. The primary advantage of
probabilistic methods is that they are very accurate and
are able to compensate for odometry errors. However,
most can not be run in real time. This is a major
disadvantage for autonomous robotic mapping.

Incremental – Incremental methods include maximization
likelihood, occupancy grids, and Dogma. Each of these
methods works in real-time just fine, but they heavily rely
on odometry data. This means that any odometry errors
will skew the entire remainder of the map. This would,
obviously, result in a less accurate method for mapping if
the odometry is in question.

Hybrid – Hybrid methods are a compromise between
probabilistic and incremental algorithms. This gives it
some of the advantages of each, but it will still have
problems on some area. For example, as mentioned
earlier, the Bayes/occupancy grid hybrid algorithm works
in real-time and calculates posteriors for accuracy, but it
is still subject to sensor error and handles cyclic
environments poorly.

APPLICATION BASED SELECTION – To select an
algorithm, the constraints must be stated and used to
choose one of the three basic types of algorithms. From
there, the advantages and disadvantages should be
compared to the desired constraints to help choose a
specific algorithm.

INTEGRATION – A system of processes for integrating
the chosen algorithm should be defined and ordered.
Each component of the robot should be considered as to
how it interfaces with this chosen algorithm. The
requirements of each of the robot and the algorithm must
be addressed. If they have reasonable solutions and
integrate well with each other, the chosen algorithm
should be implemented.

USAR ROBOT – An incremental grid occupancy
algorithm is successfully being integrated into the robot’s
control system. This simple system yields an accurate
map that meets the requirements of the project and fits
well within the scope of the competition for which it was
designed. This algorithm easily allows an
implementation of a probabilistic modification, converting
it into a hybrid algorithm.

SLAM – For most autonomous robotic systems,
simultaneous localization and mapping will be used. For
it to be used effectively, the algorithm must be carefully
selected to fit the given robot and its purpose. Once this
has been done, the SLAM system can be used to aid in
exploration and navigation.

REFERENCES

1. S. Thrun. Robotic mapping: A survey. In G.
Lakemeyer and B. Nebel, editors, Exploring Articial
Intelligence in the New Millenium. MorganKaufmann,
2002.

2. S. Thrun,W. Burgard, and D. Fox. A real-time

algorithm for mobile robot mapping with applications
to multi-robot and 3D mapping. In Proceedings of the
IEEE International Conference on Robotics and
Automation (ICRA), San Francisco, CA, 2000. IEEE.

3. S. Thrun. A Probabilistic Approach to Concurrent
Mapping and Localization for Mobile Robots.
Machine Learning, 29-53. Kluwer Academic
Publishers, Boston, MA, 1998

4. J. Leal. Probabilistic 2D Mapping of Unstructured

Environments. Australian Centre for Field Robotics,
The University of Sydney, Sydney, NSW, 2006.

5. Hokuyo Automatic co. “Communication Protocol

Specification – UGR Series” February 2, 2004

6. H.P. Moravec. Sensor fusion in certainty grids for

mobile robots. AI Magazine, 9(2):61-74, 1988.

CONTACT

Jonathan Reynolds
euio76@gmail.com

DEFINITIONS, ACRONYMS, ABBREVIATIONS

SLAM: Simultaneous Localization and Mapping

USAR: Urban Search and Rescue

Pose: Location and Orientation

Posterior: Data representation of the probability that the
robot is at the given location.

Correspondence Problem: Determining if two data
points taken from two different scans are of the same
object.

EEPROM: Electronically Erasable Programmable Read
Only Memory

LADAR: LAser raDAR, a laser scanner which rotates
about an axis to give a 2D representation of its
surroundings. Note: some have been gimbled with a
second axis to provide 3D capabilities.

Gaussian: Having symmetrical bell shaped curve.

APPENDIX

#include "dp256reg.h"
#include "sci.h"
#include <stdio.h>
#include <math.h>
#include <stdarg.h>

#define RDRF 0x20 // Receive Data Register Full Bit
#define TDRE 0x80 // Transmit Data Register Empty Bit

char SCI_InChar1(void){
 while((SC1SR1 & RDRF) == 0){};
 return(SC1DRL);
}

void SCI_OutChar0(char data){
 while((SC0SR1 & TDRE) == 0){};
 SC0DRL = data;
}
void SCI_OutChar1(char data){
 while((SC1SR1 & TDRE) == 0){};
 SC1DRL = data;
}

void SCI_OutString0(char *pt){
 while(*pt){
 SCI_OutChar0(*pt);
 pt++;
 }
}
void SCI_OutString1(char *pt){
 while(*pt){
 SCI_OutChar1(*pt);
 pt++;
 }
}

void SCI_InString1(char *string){
 char character;
 int i=0;

 for (i=0; i<16; ++i){
 character = SCI_InChar1();
 string[i]=character;
 }

}

void pll(){
 SYNR = 0x01;
 while((CRGFLG & 0x08) == 0){}
 CLKSEL = 0x80;}

unsigned short n = 1;
char dist[20];
char res[20];
unsigned int result;
char str[1];
char map[160][20];
int i,j;
char temp3;
char temp2[50];
float x1,y1,angle;
int x,y,rx,ry;
int start,end,inc;

char com[20];

int main(){
 pll();

 SC0CR2 = 0x0C;
 SC0BDH = 0;
 //SC0BDL = 52;
 SC0BDL = 26;
 SC1CR2 = 0x0C;
 SC1BDH = 0;
 SC1BDL = 26;
 rx = 79;
 ry = 79;
 inc = 4; //number of data points per step
 start = 129; //start of ladar sweep
 end = 640; //end of ladar sweep
 //angle = 0.006151*inc; //angle in rads of step size

 map[0][0]=1;
 map[159][19]=128;
 map[ry][rx/8]=(map[ry][rx/8])|(1<<(ry%8)); //robot location

 i = start;

 while(i<=end){

 angle = (start-129)*0.006151;

 sprintf(com, "G%03d%03d01\n",start,start);
 SCI_OutString1(com);
 SCI_InString1(dist);

 str[0] = dist[12] - 48;
 str[1] = dist[13] - 48;

 result = (((unsigned int)str[0])<<6) | (unsigned int) str[1];

 x1 = (result*cos(angle));
 x = ((int)(x1))/100;
 if((((int)(x1))%100)>=50)
 x+=1;

 y1 = (result*sin(angle));
 y = ((int)(y1))/100;
 if((((int)(y1))%100)>=50)
 y+=1;

 x = rx-x;
 y = ry-y;

 map[y][x/8]=(map[y][x/8])|(1<<(x%8));

 i+=inc;
 start+=inc;

 }

 for(i=0;i<160;i++){
 for(j=0;j<20;j++){
 temp3=map[i][j];
 SCI_OutChar0(temp3);
 }
 }

 return 0;
}

