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ABSTRACT 

This paper discusses algorithms for simultaneous 
localization and mapping (SLAM).  Advantages of each 
major type of algorithm, probabilistic and incremental, 
are presented.  Hybrid approaches and their possibilities 
are discussed.  An explanation of a proper algorithm 
selection method has been provided.  The example of an 
urban search and rescue (USAR) robot is used to show 
this selection method.  This example is carried further 
through the presentation of a method for integration in 
such a robot.  The complexity of a SLAM system is 
shown and expounded upon. 

INTRODUCTION 

The robot mapping problem is one which consists of a 
robot being able to create a map in real time and know 
where it is within that map.  This is known as 
Simultaneous Localization And Mapping (SLAM).  A 
SLAM system would be very beneficial for autonomous 
robot operation.  This is especially apparent in a robot 
such as used in search and rescue. 

The robot mapping problem, more specifically, consists 
of the robot finding its pose, creating a map, and 
integrating the two.  The pose is information relating to 
the location and orientation of the robot relative to its 
environment.  If a robot is able correctly calculate its 
pose, it is then able to determine the best route to obtain 
its goal.  The problem lies in the fact that to successfully 
determine its pose, it must have a map of the 
environment; yet, to create a map, it must first explore 
and thus know its pose. 

In some situations, 3D SLAM can be beneficial.  In this 
case, a three dimensional rendering of the environment 
is created for the map.  This additional level of 
complexity greatly increases the data processing 
requirements for the processor.  A three 3D SLAM 
system would, in essence, use the same algorithm as its 
2D counterpart.  From this point on, the author will 
assume that a 2D SLAM system will be used. 

Mapping algorithms, effectively, began in the 1980’s with 
occupancy grid mapping which creates a grid of 
elements for the map.  In the late 1990’s, probabilistic 
methods tended to dominate algorithms used.  Today, 
even hybrid combinations of incremental and 
probabilistic methods are used [1]. 

ALGORITHMS 

There are three primary types of algorithms to be 
considered.  These are probabilistic, incremental, and 
hybrid methods. 

PROBABILISTIC ALGORITHMS – The primary purpose 
of the probabilistic algorithm is to address the 
correspondence problem.  This is where the robot must 
be able to determine if data taken at different times 
correspond to the same physical object.  Probabilistic 
techniques yield some of the most accurate results of 
any method.  Unfortunately, most of them are too 
computationally intensive to run in real-time. 

Bayes’ Filter – The foundation of any probabilistic 
algorithm is Bayes’ rule.  Bayes’ rule (Equation 1) states 
that the probability of x given data, d, (the posterior) is 
equal to the probability of d with respect to x (likelihood) 
multiplied by the probability of the prior, x, and divided by 
the  probability of d, the marginal likelihood or evidence.  
Basically, this means that the current belief can be 
changed based on the prior belief observations.  Bayes’ 
filter uses a continuous estimation to approximate both 
the map and the robot’s pose.  Refer to Equation 2 
where s is robots pose, location and orientation, m is a 
map, z is a sensor scan, i.e. data from a laser scanner, 
and u is a set of motion commands or odometry or 
similar motion feedback data [1].   

Equation 1 
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Because this approach utilizes a continuous equation, 
integral over real time, it is not possible to use it in this 
form.  However, the Bayes’ Filter is the basis for many 
probabilistic methods. 

Backwards Correction – For cyclic maps, locations with 
passages that close back on themselves, error tends to 
grow exponentially (Figure 1).  One way to fix this 
problem is to adjust the map backwards in time.  
Equations 3-5 describe the difference used for the 
backwards correction where ts� is the robots belief that 
this posterior is correct.  This yields a very accurate map 
for cyclic environments, but at a greater processing cost 
[2]. 

Equation 3 
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Figure 1.  Odometry error increasing over time [1]. 

Kalman Filter – Kalman filters are basically Bayes’ filters 
with the exception that they use Gaussians to estimate 
the robots pose.  The Gaussian is the full state vector for 
sx, sy, and s� for K distinguishing points as seen in 
Equation 6.  The Kalman filter algorithm operates on the 
postulation that the current state function must be a 
linear step from the previous state function with 
Gaussian noise.  This noise builds an umbrella shaped 
region of uncertainty (Figure 2).  This Kalman filter then 

uses Bayes’ theorem to “filter” out the less likely results.  
Even though this is done, the uncertainty will grow 
overtime. [2, 3] 

 
Figure 2.  Gaussian error of posterior increasing with 
time [2]. 

Equation 6 
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Expectation Maximization – This algorithm calculates the 
expected posterior of a robots pose for a given map.  
This method must process the data many times, and 
therefore can not be used in real-time.  It is, however, 
one of the most accurate solutions to the 
correspondence problem. [2] 

Lu/Milios – This algorithm is a variation of the Kalman 
filter.  It estimates posteriors the same way, but it also 
compares ranger data from multiple scans.  This allows 
the Lu/Milios algorithm to compensate for 
correspondence errors.  However, this is not a real-time 
algorithm. 

INCREMENTAL METHODS – Incremental methods are 
designed to work in real time easier than probabilistic 
methods.  Overall, incremental methods allow for a more 
plausible algorithm to be used in real-time, onboard and 
autonomous robot. 

Maximization Likelihood – This method compares nearby 
measurements of the previous map to see if it can tell 
which way the robot has moved and by how much.  
Because this is done repeatedly, it can recover from 
wrong correspondences.  This algorithm takes a large 
amount of processing, and therefore is sometimes not 
able to be run in real-time.  Although, it does work 
amazingly well. [1, 2] 

Occupancy Grids – This is one of the most popular 
algorithms because of its ease of use and robustness.  
The basic principle of occupancy grids is that the binary 
occupancy of a location (x,y) is calculated.  This method 
will incrementally update each grid cell.  The primary 
problem is one of consistent mapping due to noisy 
sensors.  This problem is alleviated when coupled with a 
probabilistic approach.  This will be further discussed 
later. 



Dogma – Dynamic Occupancy Grid Mapping Algorithm is 
one which can learn.  It is very effective in dynamic 
environments, and it operates by learning the 
characteristics of an obstacle such as a trash can.  This 
algorithm relies on the mutually exclusive requirement: 
any given object can not be in multiple locations at the 
same time. 

HYBRID APROACHES – These consist of some 
combination between probabilistic and incremental 
methods.  Hybrid algorithms typically handle complex 
mapping in real-time.  Although they are newer, and 
perhaps a bit more difficult to implement, they provide 
much better results than either purely probabilistic or 
incremental methods can be for an autonomous robot. 

Applying a method of Bayes’ filters to the occupancy grid 
algorithm yields a very powerful solution to the 
autonomous robot mapping dilemma.  This method can 
solve problems of sensor noise by generating 
probabilistic maps.  It would calculate the posterior for 
each grid cell with p(mx,y|z

t,xt).  The logarithmic form for 
the resulting equation is seen in Equation 7. [6] 

Equation 7 
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Another common hybrid approach is to integrate a 
Bayes’ filter into an incremental maximum likelihood 
method.  This allows the robot to maintain calculate its 
posterior while mapping. 

Hybrid approaches work very well at creating reasonably 
consistent maps in real-time, it is important to note that 
they do not handle cyclic environments well.  While it is 
possible for some hybrid approaches to use backwards 
correction to compensate, the results are not always 
stable. 

 
ALGORITHM SELECTION 

SELECTION PROCESS – To select an algorithm, one 
must first consider their constraints.  It is important to 
decide if real-time mapping is necessary or not.  Beyond 
that, it is helpful to know what level of accuracy is 
required, whether the maps generated will be stationary 
or for a SLAM system, and whether or not a dynamic 
environment is to be mapped.  This process lists many of 
the commonly used mapping algorithms today, but 
should not be considered to be a complete work on the 
subject.  Once the primary constraints are defined and a 
good source of algorithms has been defined, a selection 
can be made.  One method for selection is to create an 
advantage/disadvantage matrix to compare the 
properties of each algorithm with the desired constraints. 

USAR EXAMPLE – As an example, an autonomous 
robot used for Urban Search and Rescue will be 
discussed.  The one seen in Figure 3 was built for a 
USAR competition held annually by Robocup. 

 
Figure 3.  Good Samaritan USAR robot created by 
Colorado State University for Robocup competition. 

Constraints - For this competition, the robot must 
navigate through a simulated earthquake environment 
trying to find simulated victims.  There is a very strong 
emphasis on autonomy and a map with victim and 
obstacle locations must be created.  For autonomy and 
exploration to co-exist effectively, it must operate with a 
SLAM system.  It will need to use the map to wander 
toward unexplored areas, and to find its way to goal, 
such as a user input or a possible victim.  The map will 
have to be created in real time based on laser range-
finder data.  It is desired that it will be able to map while 
simultaneously carrying out other goals. 

Selection – Based on these goals, each of the three 
main topics have to be considered.  The real-time aspect 
would lead to an incremental method, but the accuracy 
needed, because of the desire to map while moving, 
leads to a probabilistic method.  This should prompt one 
to consider using hybrid methods.  Because of the ease 
of implementation, a hybrid occupancy grid algorithm will 
be considered. 

INTEGRATION AND USAGE 

BOUNDS – Bounds to consider when implementing an 
algorithm include processing and memory requirements, 
available sensors, and availability of accurate odometry.  
For this example, it can be assumed that the robot will 
not be trying to map cyclic environments.  With this 
assumption, the amount of necessary calculations will be 
fairly insignificant compared to other mapping algorithms.  
The memory, however, will likely be substantial.  
Because of speed, it is desirable to use on chip memory 
whenever possible (versus serial EEPROM’s).  Thus, it is 
fair to reason that there could be one dedicated 
processor just for mapping.  It is possible that this 
processor (if sufficient) would also be able to handle 
some of the other robotic functions, such as directed 
wander for exploration, which relate to the map. 

For high accuracy, the sensors must be sufficient in data 
acquisition ability and distance accuracy.  In this example 
a LADAR is used.  The particular model used here, as 



shown in Figure 4, is a Hokuyo URG-04.  This has a 
240o range with 0.36o increments [5].  This sensor is 
quite adequate for the level of precision desired for this 
USAR competition. 

 
Figure 4.  Hokuyo URG-04LX LADAR [5]. 

The next question is whether or not accurate odometry is 
available.  Traditionally, tracked robots do not provide 
accurate odometry.  This is because of slippage of the 
track and obstacles that one track may transverse 
without the other.  Probabilistic methods have been 
known to produce accurate results even without 
odometry at all.  This provides yet another incentive to 
continue on with the hybrid occupancy grid method 
versus simply incremental algorithms. [2, 4] 

Figure 5.  Map based on LADAR data from matrix 
format. 

SLAM – The process that the processor will go through 
for using this mapping algorithm on the given example 
would be as follows.  First, it will take a sensor reading 
and convert those data points into full or empty grid cells, 
storing this information as a matrix.  Figure 5 is a robot-
centric map which was created from matrix data 
calculated from distance data from the LADAR.  The 
picture shows the actual environment that used for the 
scans.  A Freescale (Motorola) 9s12 (HC12 family) 
microcontroller was used to talk to the LADAR and 
receive data points.  The data is returned as two 6-bit 
numbers that must be converted by subtracting a 
decimal value of 48 from each, bitwise shifting the high 
bit six places, and combining it with the low bit via an OR 
function.  This value, in decimal, is the distance in 
millimeters to the point specified.  This is done for as 
many of the 681 available points as desired.  Each point 
is then converted to a delta-x and delta-y value from the 
robot’s current position using trigonometry for the angle 

of the given point added to the pose estimated angle of 
the robots current position verses its original position.  
The grid value at that point is then changed from a zero 
to a one.  Because the starting position of the robot 
within the arena is unknown, the matrix is multiplied by 
four and it is assumed to start in the center of the matrix.  
In this case, no mater where the robot starts or its 
orientation, the map of the arena will fit within this matrix.  
This, obviously, increases the size of the matrix which 
could be an issue if using a microcontroller.  In this case, 
a microcontroller was used and the entire size of this 
specific matrix fit well under the RAM limitations of this 
specific microcontroller.  Because the matrix is one of 
ones and zeros, the data can be stored in byte format; 
every eight grids in the x-direction are compiled into a 
byte.  This allows the size to be reduced for memory 
storage as well as transmitting to a user/base station.  
The C-code for these calculations can be found in the 
Appendix. 

With a second map (second scan), it would be possible 
to estimate the robots posterior within a certain error.  It 
could then compare this posterior state to the odometry 
data to reduce the error.  This allows the robot to know 
its localization and use that information for path planning. 
[4]  This step is more complicated but hopefully will be 
implemented for this robot in the near future. 

AUTONOMY – Specifically for autonomy, the robot 
would first consider its path history, as compared to the 
map it has generated.  This will allow the robot to 
“wander” or explore beyond what it has already seen.  
This wandering would of coarse be limited to the 
obstacles in the vicinity, and the robot would have a 
higher directive to avoid hitting any obstacles.  The robot 
would have to have three forms of directed wander as 
well.  The first would be if the robot detects a possible 
victim.  The second would be a user bias to its current 
autonomous path.  This may occur if the user is able to 
detect a possible victim that the robot did not.  The third 
method of directed wander, similar to the first, would be 
to further investigate a possible victim for more signs of 
confirmation without hitting the possible victim or any 
obstacle.  In each of these scenarios, the robot would 
have to compare its current map with the desired 
destination and calculate the best route to get there in 
the quickest time while avoiding obstacles. 

CONCLUSION 

ALGORITHMS - The three primary types of mapping 
algorithms are probabilistic, incremental, and hybrid.  
Each has its own advantages and disadvantages.   

Probabilistic - The probabilistic methods include Bayes’ 
filter, backwards corrections, Kalman filter, expectation 
maximization, and Lu/Milios.  The primary advantage of 
probabilistic methods is that they are very accurate and 
are able to compensate for odometry errors.  However, 
most can not be run in real time.  This is a major 
disadvantage for autonomous robotic mapping. 



Incremental – Incremental methods include maximization 
likelihood, occupancy grids, and Dogma.  Each of these 
methods works in real-time just fine, but they heavily rely 
on odometry data.  This means that any odometry errors 
will skew the entire remainder of the map.  This would, 
obviously, result in a less accurate method for mapping if 
the odometry is in question. 

Hybrid – Hybrid methods are a compromise between 
probabilistic and incremental algorithms.  This gives it 
some of the advantages of each, but it will still have 
problems on some area.  For example, as mentioned 
earlier, the Bayes/occupancy grid hybrid algorithm works 
in real-time and calculates posteriors for accuracy, but it 
is still subject to sensor error and handles cyclic 
environments poorly. 

APPLICATION BASED SELECTION – To select an 
algorithm, the constraints must be stated and used to 
choose one of the three basic types of algorithms.  From 
there, the advantages and disadvantages should be 
compared to the desired constraints to help choose a 
specific algorithm. 

INTEGRATION – A system of processes for integrating 
the chosen algorithm should be defined and ordered.  
Each component of the robot should be considered as to 
how it interfaces with this chosen algorithm.  The 
requirements of each of the robot and the algorithm must 
be addressed.  If they have reasonable solutions and 
integrate well with each other, the chosen algorithm 
should be implemented. 

USAR ROBOT – An incremental grid occupancy 
algorithm is successfully being integrated into the robot’s 
control system.  This simple system yields an accurate 
map that meets the requirements of the project and fits 
well within the scope of the competition for which it was 
designed.  This algorithm easily allows an 
implementation of a probabilistic modification, converting 
it into a hybrid algorithm. 

SLAM – For most autonomous robotic systems, 
simultaneous localization and mapping will be used.  For 
it to be used effectively, the algorithm must be carefully 
selected to fit the given robot and its purpose.  Once this 
has been done, the SLAM system can be used to aid in 
exploration and navigation. 
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DEFINITIONS, ACRONYMS, ABBREVIATIONS 

SLAM: Simultaneous Localization and Mapping 

USAR: Urban Search and Rescue  

Pose: Location and Orientation 

Posterior: Data representation of the probability that the 
robot is at the given location. 

Correspondence Problem: Determining if two data 
points taken from two different scans are of the same 
object. 

EEPROM: Electronically Erasable Programmable Read 
Only Memory 

LADAR: LAser raDAR, a laser scanner which rotates 
about an axis to give a 2D representation of its 
surroundings.  Note: some have been gimbled with a 
second axis to provide 3D capabilities. 

Gaussian: Having symmetrical bell shaped curve. 

 

 



APPENDIX 

#include "dp256reg.h" 
#include "sci.h" 
#include <stdio.h> 
#include <math.h> 
#include <stdarg.h> 
 
#define RDRF 0x20   // Receive Data Register Full Bit 
#define TDRE 0x80   // Transmit Data Register Empty Bit 
 
char SCI_InChar1(void){ 
  while((SC1SR1 & RDRF) == 0){}; 
  return(SC1DRL); 
} 
 
void SCI_OutChar0(char data){ 
  while((SC0SR1 & TDRE) == 0){}; 
  SC0DRL = data; 
} 
void SCI_OutChar1(char data){ 
  while((SC1SR1 & TDRE) == 0){}; 
  SC1DRL = data; 
} 
 
void SCI_OutString0(char *pt){ 
  while(*pt){ 
    SCI_OutChar0(*pt); 
    pt++; 
  } 
} 
void SCI_OutString1(char *pt){ 
  while(*pt){ 
    SCI_OutChar1(*pt); 
    pt++; 
  } 
} 
 
void SCI_InString1(char *string){ 
 char character; 
 int i=0; 
 
 for (i=0; i<16; ++i){ 
 character = SCI_InChar1(); 
 string[i]=character; 
 } 
 
} 
 
void pll(){ 
 SYNR = 0x01; 
 while((CRGFLG & 0x08) == 0){} 
 CLKSEL = 0x80;} 
 
  
 
unsigned short n = 1; 
char dist[20]; 
char res[20]; 
unsigned int  result; 
char str[1]; 
char map[160][20]; 
int i,j; 
char temp3; 
char temp2[50]; 
float x1,y1,angle; 
int x,y,rx,ry; 
int start,end,inc; 
 
 
 

 
 
 
char com[20]; 
 
 
int main(){ 
 pll(); 
  
 SC0CR2 = 0x0C; 
 SC0BDH = 0; 
 //SC0BDL = 52; 
 SC0BDL = 26; 
 SC1CR2 = 0x0C; 
 SC1BDH = 0; 
 SC1BDL = 26; 
 rx = 79; 
 ry = 79; 
 inc = 4;  //number of data points per step 
 start = 129;  //start of ladar sweep 
 end = 640;  //end of ladar sweep 
 //angle = 0.006151*inc;  //angle in rads of step size 
  
 map[0][0]=1; 
 map[159][19]=128; 
 map[ry][rx/8]=(map[ry][rx/8])|(1<<(ry%8));  //robot location 
  
 i = start; 
  
 while(i<=end){ 
  
  angle = (start-129)*0.006151; 
 
  sprintf(com, "G%03d%03d01\n",start,start);  
  SCI_OutString1(com); 
  SCI_InString1(dist); 
   
  str[0] = dist[12] - 48; 
  str[1] = dist[13] - 48; 
   
  result = (((unsigned int)str[0])<<6) | (unsigned int) str[1]; 
   
  x1 = (result*cos(angle)); 
  x = ((int)(x1))/100; 
  if((((int)(x1))%100)>=50) 
   x+=1; 
   
  y1 = (result*sin(angle)); 
  y = ((int)(y1))/100; 
  if((((int)(y1))%100)>=50) 
   y+=1; 
   
  x = rx-x; 
  y = ry-y; 
   
  map[y][x/8]=(map[y][x/8])|(1<<(x%8)); 
   
  i+=inc; 
  start+=inc; 
   
 } 
  
 for(i=0;i<160;i++){ 
  for(j=0;j<20;j++){ 
   temp3=map[i][j]; 
   SCI_OutChar0(temp3); 
  } 
 } 
  
  return  0; 
}

 


